If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+42t=0
a = 6; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·6·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*6}=\frac{-84}{12} =-7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*6}=\frac{0}{12} =0 $
| |2x+4|=15 | | 2=m/8-7 | | 4-(7-6m)=-15 | | 2=m/2-8 | | 2x3=13 | | -3+9(5z+3)=339 | | X/2(2x+1+2)=(x+3)(x-1) | | 4x-3+7+18=180 | | 15x=12x^2-180 | | X÷5=3x-2 | | 4x+5=2x-5+3x-17 | | 3(x-4)=12x-12+x | | 5x-9=-16+6x-3x | | d-3.30=2 | | x^2+42x-13=12 | | 2y+y+40=180 | | -13x=36 | | 10=3(h-9)+7 | | 4-6n=6-2n | | -6-8c=-10c+10 | | p-8=-18 | | -35g+15=(-35+15) | | (-5÷4)x-5=35 | | (7m+6m)-3×4=207 | | 8x-3=16x-33x= | | -5+k/10=-7 | | 5(x+55)=300 | | 7x–7(x+6)=10 | | x+65=34 | | -3(z-9.49)=7.11 | | 9=(x+3)(x−5) | | 1.5-0.04x=-3.74 |